Saturday, August 4, 2018

INTEGRATION

INTEGRATION

Integration is means adding small parts to get the whole.

Using integration area, volume and other useful thinks can be find out.

without integration, physics and engineering problems can be solved

 integration is represented by ∫ which is the stylish form of S where S is sum
Indefinite integral
If the limit of integral is not given then it is Indefinite integral
∫2x²dx=x³+c

where c is constant and called constant of integration.

Definite integral
if the limit of integration is given then it is called definite integral.
Here constant of integration is not used.

Some standard function and integral

Integrate y=∫cos²xdx
y=∫cos²xdx

=∫(1+cos2x)/2dx

=⟦x+(sin2x/2)⟧/2+c

=x/2+sin2x/4+c

 Integrate  y=∫e^2x dx
y=∫e^2x dx
y=e^2x/2+c
c is constant of integration

Integrate y=∫(√1+sin2x)dx
y=∫(√1+sin2x)dx
But 1=sin²x+cos²x
hence
y=∫√(sin²x+cos²x+sin2x)dx
y=∫√(sin²x+cos²x+2sinxcosx)dx   beause sin2x=2sinxcosx
y=∫√(sinx+cosx)²dx     beause x²+y²+2xy=(x+y)²
y=∫(sinx+cosx)dx

y=-cosx+sinx+c
c is constant of integration

Integrate y=∫(cosx+sinx)/(cosx-sinx) dx
y=∫(cosx+sinx)/(cosx-sinx) dx
y=∫(cosx+sinx/cosx-sinx)×(cosx+sinx/cosx+sinx)dx
y=∫(cosx+sinx)²/(cos²x-sin²x)dx
y=∫(cos²x+sin²x+2sinxcosx)/cos2x dx
y=∫(1+sin2x)/cos2x dx
y=∫(sec2x+tan2x)dx
y=ln(sec2x+tan2x)/2+ln(sec2x)/2+c
c is constant of integration
Determine the equation of the function that has a slope of -5 and crosses the x-axis at (3,0).
Given slope i.e. dy/dx=-5
then
dy=-5dx
integrate both sides
∫dy=-∫5dx
y=-5x+c
it passes through (3,0)
i.e.
0=-5×3+c
c=15

y=-5x+15

What is the integral of sqrt (1-sin2x)?
I=∫√(1-sin2x)dx
=∫√(sin²x+cos²x-2sinxcosx)dx
=∫√(sinx-cosx)²dx
=∫(sinx-cosx)dx

I=-cosx-sinx







solve y=∫dx/(ex+e-x)
=∫dxex/(ex+e-x)ex
=∫dxex/(e2x+1)
put ex=t
exdx=dt
=dt/(t²+1)
=arctant
=arctan(ex)

No comments:

Post a Comment

Equation of line

 Find the equation of line having intercept are 3 and 2 General equation of line having intercept a and b is  X/a + Y/b=1 X/3+Y/2=1 The angl...